REFERENCES
[1] Eyuboglu, K.; Uzar U.: The impact of tourism on CO2 emission in Turkey. Current Issues in Tourism, 23 (2020), No. 13, pp. 1631-1645
[2] Pierre, C.; Francesco, P.; Theo, N.: Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping. International Journal of Production Economics, 208 (2019), pp. 17-28
[3] Mora, P.; Morra, G.; Yuen, D. A.; et al.: Convection-Diffusion with the Colour Gradient Lattice Boltzmann Method for Three-Component, Two-Phase Flow. Transport in Porous Media, 147 (2023), No. 2, pp. 259-280
[4] Braeuer, F.; Finck, R.; Mckenna, R.: Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO2-minimizing storage dispatch in Germany. Working Paper Series in Production and Energy, 266 (2020), pp. 121588
[5] Yang, H.; Huang, X.; Hu, J.; et al.: Achievements, challenges and global implications of China’s carbon neutral pledge, 16 (2022), No. 8, pp. 111-114
[6] An, R.; Yu, B.; Li, R.; et al.: Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Applied Energy, 226 (2018), pp. 862-880
[7] Aghaie, M.; Rezaei, N.; Zendehboudi, S.: A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews, 96 (2018), pp. 502-525
[8] Shi, P.; Yang, W.; Wu, P.; et al.: Numerical study on combustion performance of propane non-premixed mild in O2/CO2 atmosphere. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Taylor & Francis, 0 (2022), No. 0, pp. 1-12
[9] Xie, Y.; Tu, Y.; Jin, H.; et al.: Numerical study on a novel burner designed to improve MILD combustion behaviors at the oxygen enriched condition. Applied Thermal Engineering, 152 (2019), pp. 686-696
[10] Feng, C.; Lin, T.; Zhu, R.; et al.: Key technologies for CO2 capture and recycling after combustion: CO2 enrichment in oxygen enriched combustion of converter gas. Journal of Cleaner Production, 380 (2022), pp. 135128.
[11] Carrasco-Maldonado, F.; Spörl, R.; Fleiger, K.; et al.: Oxy-fuel combustion technology for cement production – State of the art research and technology development. International Journal of Greenhouse Gas Control, 45 (2016), pp. 189-199
[12] European Cement Research Academy (ECRA), Technical Report TR-ECRA-119/ 2012, ECRA CCS Project – Report on Phase III, 2012
[13] Wang, Y.; Liu, Y.; Ma, Z-M.: The scale-invariant space for attention layer in neural network. Neurocomputing, 392 (2020), pp. 1-10
[14] Park, S.; Kim, Y.: Numerical modeling for structure and NOx formation characteristics of oxygen-enriched syngas turbulent non-premixed jet flames. International Journal of Hydrogen Energy, 42 (2017), No. 32, pp. 20809-20823
[15] Yang, L.; Ma, H.: Experimental Study on the Effect of Clinker Mineral Composition on the Properties of Portland Cement. Integrated Ferroelectrics, 217 (2021), No. 1, pp. 1-10
[16] Bourchy, A. et al.; Effect of Cement Composition on Fresh State and Heat of Hydration of Portland Cement with Limestone and Slag. ACI Materials Journal. 117 (2020), No. 1, pp. 153-165
[17] Owens, P.; Newman, J.: The future specification of cement type, class and water/cement ratio: Part 2: Durability considerations for cements containing approved secondary main constituents and additions. Concrete, 38 (2004), No. 3, pp. 46-49
[18] Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. 2 (1969), pp. 65-71
[19] Zheng, L.; Hills, T, P.; Fennell, P.: Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere. Faraday Discussions, The Royal Society of Chemistry, 192 (2016), No. 0, pp. 113-124
[20] Maki, I.: Morphology of the so-called prismatic phase in Portland cement clinker. Cement and Concrete Research, 4 (1974), No. 1, pp. 87-97
[21] Maki, I.; Kato, K.: Phase identification of alite in Portland cement clinker [J]. Cement & Concrete Research, 12 (1982), No. 1, pp. 93-100
[22] Bogue, R.H.: Calculation of the Compounds in Portland Cement [J]. Industrial & Engineering Chemistry Analytical Edition, 1 (2008), No. 4, pp. 192-197
[23] De La Torre, A.G.; Bruque, S.; Aranda, M.A.G.: Rietveld quantitative amorphous content analysis [J]. Journal of Applied Crystallography, No. 2, pp. 196-202