CHALMERS UNIVERSITY OF TECHNOLOGY

World first concept for rechargeable cement-based batteries

Imagine an entire twenty storey concrete building which can store energy like a giant battery. Thanks to unique research from Chalmers University of Technology, Sweden, such a vision could someday be a reality. Researchers from the Department of Architecture and Civil Engineering recently published an article outlining a new concept for rechargeable batteries – made of cement.

The ever-growing need for sustainable building materials poses great challenges for researchers. Doctor Emma Zhang, formerly of Chalmers University of Technology, Sweden, joined Professor Luping Tang’s research group several years ago to search for the building materials of the future. Together they have now succeeded in developing a world-first concept for a rechargeable cement-based battery.

The concept involves first a cement-based mixture, with small amounts of short carbon fibres added to increase the conductivity and flexural toughness. Then, embedded within the mixture is a metal-coated carbon fibre mesh – iron for the anode, and nickel for the cathode. After much experimentation, this is the prototype which the researchers now present.

Luping Tang and Emma Zhang’s research has produced a rechargeable cement-based battery with an average energy density of 7 Watthours per square metre (or 0.8 Watthours per litre). Energy density is used to express the capacity of the battery, and a modest estimate is that the performance of the new Chalmers battery could be more than ten times that of earlier attempts at concrete batteries. The energy density is still low in comparison to commercial batteries, but this limitation could be overcome thanks to the huge volume at which the battery could be constructed when used in buildings.

A potential key to solving energy storage issues

The fact that the battery is rechargeable is its most important quality, and the possibilities for utilisation if the concept is further developed and commercialised are almost staggering. Energy storage is an obvious possibility, monitoring is another. The researchers see applications that could range from powering LEDs, providing 4G connections in remote areas, or cathodic protection against corrosion in concrete infrastructure.

The concept of using structures and buildings in this way could be revolutionary, because it would offer an alternative solution to the energy crisis, by providing a large volume of energy storage.

Concrete, which is formed by mixing cement with other ingredients, is the world’s most commonly used building material. From a sustainability perspective, it is far from ideal, but the potential to add functionality to it could offer a new dimension.

Challenges remain with service-life aspects

The idea is still at a very early stage. The technical questions remaining to be solved before commercialisation of the technique can be a reality include extending the service life of the battery, and the development of recycling techniques.

“Since concrete infrastructure is usually built to last fifty or even a hundred years, the batteries would need to be refined to match this, or to be easier to exchange and recycle when their service life is over. For now, this offers a major challenge from a technical point of view,” says Emma Zhang.

But the researchers are hopeful that their innovation has a lot to offer. “We are convinced that this concept makes for a great contribution to allowing future building materials to have additional functions such as renewable energy sources,” concludes Luping Tang.

www.chalmers.se

x

Related articles:

Issue 2018-9

Welcome to ibausil, the 20th International Conference on Building Materials in Weimar

For the 20th time now, both researchers and engineers working in the industry will be meeting up in Weimar for the ibausil. Focus of this year’s conference is again traditionally the presentation of...

more
Issue 2020-11-12 LINDNER-RECYCLINGTECH GMBH

Active prevention of fires caused by damaged batteries during alternative fuel production

Whether smartphones, cars or toothbrushes – in today‘s digitalised, mobile society it‘s hard to imagine life without batteries. Billions of them are used for countless applications. According to...

more
Issue 2020-7-8 IBAC – RWTH AACHEN UNIVERSITY

Chair of Building Materials Research welcomes Professor Thomas Matschei

On April 1, 2020, Professor Thomas Matschei was officially appointed Chair of Building Materials at the Institute of Building Materials Research, ibac for short, at RWTH Aachen University.  Between...

more
Issue 2016-12 RECYCLING R’16 CONFERENCE, WEIMAR/GERMANY

Awards for young scientists at Weimar ­Recycling Conference

On 19.09.-20.09.2016, more than 60 recycling specialists from teaching, research and industry met for the Recycling Conference in Weimar. At the now eighth conference in this series established in...

more
Issue 2014-12 USA

Solidia gets further research funding

The next phase of a four-year research and development project supporting the commercialization of Solidia Technol-ogies’ carbon dioxide-reducing cement and concrete processes will commence with the...

more