“Efficiency – what is that?” – How to measure the performance of a kiln line?

In the past editions I have written in a rather abstract way about “process optimization” time and time again – and you may be asking yourself: what does that mean in a specific case? The question is justified – but let me also ask: What does “optimal” mean in a specific case? How would one measure “optimal operation”? Classically, parameters such as production output or energy consumption will be mentioned here. However, these performance values are not well suited to describe whether a system really runs optimally, because any installed system could easily benefit if reserves are built into its design. How can you assess the performance of the operating personnel and the kiln line without falsifying the assessment due to hidden reserves? Specific parameters or KPI’s are then used to calculate a target value in relation to cost. A classic example is the specific fuel requirement or the specific amount of exhaust gas, which process engineers particularly like to consider. However, these values are also only suitable to a limited extent because they depend heavily on the fuels used and particularly strongly on the raw material moisture of the specific case. The performance and excellence of the operating personnel, as well as the performance of the plant system, is probably best represented by the oxygen content during operation in the kiln inlet chamber and after the preheater. This parameter describes best how close the kiln system is operated “at its optimum” – or in other words: how much the operation of the system exploits the potential of the system technology. Of course, the oxygen values too cannot be compared 1:1 between different kilns, because plant and fuel specifics can be very different. In any case however, high “required” oxygen values are either a sign of the comfort zone of the kiln operation or a sign of the combustion process not working properly. Often coarse fuel falls from the calciner or the kiln riser duct into the kiln inlet, where it reduces oxygen unnoticed in the material bed and thus signals to the system operator either through build-up or quality problems: “We need more oxygen!” If, on the other hand, the fuel were to be kept in suspension, the kiln would also be able to be operated with a lower oxygen supply and would therefore be considerably more energy efficient.

Best regards
Matthias Mersmann
x

Related articles:

Issue 08/2024 WO 2024/179118 A1

Oxygen-fuel combustion clinker-cooler air supply system

(22) 11.12.2023 (43) 06.09.2024 (57) An oxygen-fuel combustion clinker-cooler air supply system. The air supply system comprises a clinker cooler (1), a kiln tail system (11), an oxygen generation...

more
Issue 8/2021 MAERZ OFENBAU AG

New PFR lime kiln process with blast furnace gas and oxygen

The annual worldwide lime production amounts to approximately 400 million t and roughly 50% thereof is used for the iron and steel industry. Large steel mills often operate their own lime kilns and it...

more
Issue 8/2023 VDZ TECHNOLOGY GGMBH | RUHR UNIVERSITY BOCHUM

Investigations on solid recovered fuel and clinker quality

1 Introduction In cement production, a significant portion of the thermal energy is used to burn the cement clinker in the rotary kiln. Nowadays, alternative fuels are used in parallel with fossil...

more
Issue 5/2021 MAERZ OFENBAU AG

Replacing mixed feed lime kilns

1 Mixed feed shaft kilns Mixed feed shaft kilns in the lime, soda and sugar industries are in operation in large numbers worldwide. They are often used where high CO2 exhaust gas concentration or lime...

more
Issue 7/2023 WO 2023/101873 A1

Oxygen injection for alternative fuels used in cement production

(22) 23.11.2022 (43) 08.06.2023 (57) Provided is a system for enhancing combustion in a kiln, including a kiln combustion chamber disposed within the kiln, the kiln combustion chamber having an...

more